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The research on relationships among vehicle operating speed, roadway design elements,weather, and traffic vol-
ume on crash outcomes will greatly benefit the road safety profession in general. If these relationships are well
understood and characterized, existing techniques and countermeasures for reducing crash frequencies and
crash severities could potentially improve, and the opportunity for newmethodologies addressing and anticipat-
ing crash occurrence would naturally ensue. This study examines the prevailing operating speeds on a large scale
and determines how traffic speeds and different speed measures interact with roadway characteristics and
weather condition to influence the likelihood of crashes. This study used three datasets from Washington and
Ohio: 1) Highway Safety Information System (HSIS), 2) theNational PerformanceManagement Research Dataset
(NPMRDS), and 3) National Oceanic and Atmospheric Administration (NOAA) weather data. State-based con-
flated databases were developed using the linear conflation of HSIS and NPMRDS. The results show that certain
speedmeasureswere found to be beneficial in quantifying safety risk. Annual-level crash predictionmodels show
that increased variability in hourly operating speed within a day and an increase in monthly operating speeds
within a year are both associated with a higher number of crashes. Safety practitioners can benefit from the cur-
rent study in addressing the issue of speed and weather in crash outcomes.
© 2020 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Current crash prediction methods—such as those in the Highway
Safety Manual (HSM)—consist of safety performance functions (SPF)
and crash modification factors (CMF) [1]. SPF indicates an equation
that can be used to predict crashes as a function of different exposures
and CMF indicates a multiplicative factor which is calculated based the
proportion of crashes thatwould be expected after implementing a traf-
fic safety countermeasure. Both SPF and CMF use annual average daily
traffic (AADT) data alongwith geometric and operational characteristics
to predict the annual average crash frequency of roadway sites. One of
the most significant limitations of the HSM—and quantitative safety
performance research in general—is the omission of speed-related fac-
tors from nearly all aspects of safety predictive methods. As the second
edition of HSM (HSM2) is set to be published in 2023, recent research
has made little substantive progress in incorporating speed-related fac-
tors into crash predictive models. It is generally anticipated that a
vehicle's operating speed during crash impact affects injury severity of
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crash victims and that speed differential between drivers affects the po-
tential of the frequency of crashes. However, beyond these general rela-
tionships, there is minimal consistent evidence for speeds (i.e., posted,
average operating, or other) affecting annual crash frequency, although
intuitively speed clearly plays amajor role in safety. Another key issue is
missing is the inclusion of weather data in the development of SPFs.
There is an urgent need for research to explore new data and better un-
derstand how to effectively quantify highway safety on a daily, hourly,
or another short-term basis to overcome these limitations of current
methods.

This study collected data from three sources for Ohio and
Washington: 1) Highway Safety Information System (HSIS), 2) the Na-
tional Performance Management Research Dataset (NPMRDS) Version
1, and 3) National Oceanic and Atmospheric Administration (NOAA)
weather data to mitigate the current research gap. As these databases
are accessible to the state Department of Transportation (DOT) engi-
neers and safety professionals, there is a need for reproducible and
transferable modeling techniques, suitable for the state agencies, to im-
prove state specific SPFs for rural two-lane and rural multilane road-
ways. This project, as part of the U.S. Department of Transportation
(USDOT) Safety Data Initiative (SDI) pilot projects, conflated these data-
bases to develop an improved database for the state agencies. This paper
was prepared from the final report developed for the rural speed safety
ting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
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project [1]. This paper focuses on the SPFs for total (K - fatal, A - incapac-
itating injury, B - non-incapacitating injury, C – minor injury, and O –
property damage only) crashes, fatal and injury (KABC) crashes, and
non-injury (PDO) crashes, for Washington and Ohio separately as well
as for both states together, for rural two-lane and rural multilane
roadways.

2. Literature review

The literature review is divided into two sub-sections: 1) studies on
operating speed and crash outcomes, and 2) studies on weather and
crash outcomes.

2.1. Studies on operating speed and crashes

Although speed is considered amajor contributing factor of roadway
crashes, research findings are inconsistent. While some studies have
found that higher speeds are associated with an increased likelihood
of collisions, other studies have found the opposite, stating that higher
speeds are associated with a lower probability of collisions. A few stud-
ies have established statistical models between operating speed and
crash occurrence. Findings from the most relevant studies are summa-
rized in Table 1.

Elvik [2] performed a meta-analysis using 98 studies containing 460
estimates of the association between changes in speed and changes in
crash frequencies. This study also provides details on power model,
which was proposed by Nilsson [3]. The meta-analysis shows that
speed changes has a strong relationship to crash frequency change or
severity of injuries. Abdel-Aty and Radwan [4] studied speed by captur-
ing the magnitude of speeding relative to the posted speed limit. This
speeding indicator variable was shown to affect the crash involvement
of male and young drivers. The preliminary analysis of a study
Table 1
Key studies on speed-crash relationships.

Study Analysis
Level

Roadway/Location Speed Measures Oper
Spee
Sour

Elvik [2] Segment – Mean Speed and
other speed
measures

Meta

Nilsson [3] Segment – – Pow
Abdel-Aty and
Radwan [4]

Segment Principal arterial, Florida Speeding relative to
posted speed limits

Cras

Taylor et al.
[5]

Segment Different roadways, UK Average Speed Road

Pei et al. [6] Segment Both urban and rural,
Hongkong

Standard deviation
of average speed

Annu
cens

Yu et al. [7] Segment Freeways, Colorado Speed information
prior to crash
occurrence

Rada

Gargoum and
El-Basyouny
[8]

Segment Urban two-lane, Canada Standard deviation
of speed

Spee
oper

Imprialou
et al. [9]

Traffic
operation
scenarios

Strategic road network, UK Grouped average
speed prior to crash
occurrence

Indu
loop
dete

Yu et al. [10] Segment Urban expressway, China Average Speed Usin
algo

Banihashemi
et al. [11]

Segment Urban Interstate,
Washington

Operating and
Posted Speed
Differential

NPM

Wang et al.
[12]

Segment 234 one-way road segments
from eight arterials in
Shanghai

Mean speed Taxi
high
frequ
GPS

Dutta and
Fontaine
[13]

Segment 4 lane rural freeway and 6
lane urban freeway
segments in Virginia

Speed variations Phys
sens
INRI
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conducted by Taylor et al. [5] based in the United Kingdom revealed
that, for the compiled dataset, the average speedwas negatively related
to crash frequency. The authors attributed this finding to the difference
in road quality at the road segments sampled; therefore, they created
homogenous groups throughwhich the effects of road quality on the re-
lationship between collisions and speed could be captured. The
findings show that in a given set of road and traffic conditions the fre-
quency of crashes increases with the speed of traffic, and the higher
the speed the more rapidly does crash frequency rise with increases in
speed.

Pei et al. [6] showed that crash risk decreases as speed increases. This
study also revealed that there might be other explanatory factors, such
as road design,weather conditions, and temporal distribution on the re-
lationship between speed and crash risk. Yu et al. [7] employed a Bayes-
ian inference method to model crashes using one year's worth of crash
data on I-70 in Colorado. Their model included real-time weather, traf-
fic, and road geometry variables and indicated that the weather condi-
tion variables play a significant role in the crash occurrence. This study
also suggested that lower speeds at the crash segment and higher
occupancy at the upstream segment 5–10 min before the crash
time increases the likelihood of crashes. This could be an indication
of congestion. However, lower speed and higher crash risk can
both be the results of severe weather conditions in which case the
relations between the two would be affected by a confounding
variable.

Gargoum and El-Basyouny [8] conducted a study of urban two-lane
streets in which they attempted to model the relationship between av-
erage speed and crash counts while considering effects from confound-
ing factors. They found that that the standard deviation of operating
speed seemed to be negatively related to crash frequencies
(i.e., increases in the deviation of speeds from the average were related
to decreases in crash frequency, and vice versa); however, this
ating
d Data
ce

Key Findings on Speed-Crash Relationship

-analysis Speed changes has a strong relationship to crash frequency change or
severity of injurie

er model Relation exists between speed and crashes.
h data The speed measure (speeding relative to posted speed limits) variable

was shown to affect the crash involvement of male and young drivers.
tubes Excessive speed indicator is strongly and positively associated with

crashes.
al traffic
us (ATC)

Crash risk decreases as speed increases.

rs Negative relationships between speed and crash occurrence.

d survey
ations

Standard deviation of speed seems to be negatively related to collisions.

ctive

ctors

The results of the condition-based approach show that high speeds
trigger crash frequency. The outcome of the segment-based model is the
opposite; suggesting that the speed–crash relationship is negative
regardless of crash severity.

g
rithm

The segment-based crash frequency analysis revealed a negative
relationship between the crash and speed.

RDS Severity of crashes measured by the KABC/Total crashes ratio in
increasing by increasing the speed differential.

-based

ency
data.

1.00% increase in mean speed on urban arterials was associated with a
0.70% increase in total crashes

ical
ors;
X®

Lower average speed is associated with higher crash frequency. However,
increase of standard deviation of average speed increases crash
frequencies.
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relationship was only statistically significant at the 10% significance
level (p-value = .088). The results of Imprialou et al.'s [9] segment-
based study also showed the speed-crash relationship was negative re-
gardless of crash severity.

In a recent study by Yu et al. [10], the impacts of aggregation ap-
proaches on relationship analyses were investigated based on the ad-
vanced traffic sensing data of urban expressway systems in Shanghai.
Crash frequency analyses with segment-based and scenario-based ap-
proacheswere first conducted, and then crash risk analyses were devel-
oped at the individual crash level. The segment-based crash frequency
analysis revealed a negative relationship between the two. The findings
suggested that during congestion periods (i.e. low and moderate speed
conditions), the increase in operating speeds are associated with re-
duced crash likelihoods. Another recent study conducted by
Banihashemi et al. [11] found that the severity of crashes (a ratio of
KABC crashes to total crashes) increased as the speed differential in-
creased. Using taxi-based high frequency GPS data, Wang et al. [12]
used 234 one-way urban arterial segments from eight arterials in
Shanghai to determine average speed and speed variation. A hierarchi-
cal Poisson log-normal model with random effects was developed. Re-
sults showed that 1% increase in average speed is associated with
0.70% increase in total crashes. Dutta and Fontaine [13] continuous
count station data and probe data from 4 lane rural freeway and 6
lane urban freeway segments in Virginia. The results show that, for
rural roadways, lower average speed is associatedwith higher crash fre-
quency and increase of standard deviation of average speed increases
crash frequencies.

Based on the differing findings about the relationship between
speed (both operating speed and speed variability) and crash risks
across the literature, there is an opportunity to further advance this
debate.

2.2. Studies on weather and crash outcomes

Weather-related crashes are referred to the crasheswhichhappen in
the presence of rain, sleet, snow, wet pavement, fog, snowy/slushy
pavement, and/or icy pavement.Weather acts through visibility impair-
ments, precipitation, high winds, and temperature extremes to have an
influence on driver capabilities, vehicle performance (i.e., traction, sta-
bility, andmaneuverability), pavement friction, and roadway infrastruc-
ture. These impacts can increase crash risk and severity. Various studies
have been conducted on driver behavior and crash during rainfall or
snowfall. A brief summary of relevant studies is described below.

Examining free-flow speeds on curved highways in rural New York
State presented that drivers did not reduce their speeds sufficiently on
curves in the presence of wet-pavement conditions [14]. The re-
searchers concluded that drivers did not recognize that pavement fric-
tion is lower on wet pavement compared to the dry pavement.
Jackson and Sharif [15] used fatal crash data and geospatial analysis to
investigate the temporal and spatial distribution of rain-related fatal
crashes in Texas from 1982 to 2011. Study results suggest that rain is
a contributor to crashes in few counties but at less than 95% confidence
in some of the wetter counties. The authors recommended that these
counties should be the focus of further research and detailed analysis
to explore underlying crash contributing factors.

Mayora and Pina [16] analyzed ten years of crash data from two-lane
rural roads on the Spanish National Road System and estimated a skid
threshold. This study collected crash data from over 1085 miles of
rural two-lane roadways with skid resistance values. The results
showed that pavement friction improvement yielded substantial reduc-
tions in wet-pavement crash rates averaging around 68%. The results
confirmed the importance of maintaining adequate levels of pavement
friction to improve safety. Buddhavarapu et al. [17] attempted to estab-
lish a relationship between crash severities on horizontal curves and
pavement surface condition indices. This study used two Texas Depart-
ment of Transportation (TxDOT) maintained databases: (a) Crash
Please cite this article as: S. Das, S.R. Geedipally and K. Fitzpatrick, Inclusio
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Record Information System (CRIS) data and (b) PavementManagement
Information System (PMIS) data. The findings show that skid number
was poorly correlated with crash injury severity on two-lane horizontal
curves and the Distress Index and International Roughness Index (IRI)
were found to have a statistically significant effect on crash injury sever-
ity. Najafi et al. [18] usedNew Jersey crash data and pavement condition
data to develop regression models to investigate the impact of friction
on the rate of wet/dry condition vehicle crashes for various urban facil-
ities. The findings showed that friction is not only associated with the
rate of wet-condition vehicle crashes, but it also influences the rate of
dry condition vehicle crashes.

The literature review reveals that incorporation of weather and
speed data were used separately in many studies. Very few studies con-
sidered inclusion of both speed and weather information to understand
the association between vehicle operating speed, weather and crash
outcomes. The current study can be considered as a starting point for
more in-depth future investigations in this area.

3. Study approach

For crash data analysis, the task of acquiring all safety-related vari-
ables is often unattainable. Key challenges include simplified models
are preferred for ease of interpretation and usability, access to quality
data of the type and quantity needed for a robust study is expensive,
and sufficient analytical expertise for both the analyst and user may
not be present. Model development using a few key explanatory vari-
ables (for example, segment length and traffic volume) can produce rel-
atively simple parsimonious models. For example, if traffic volumes are
not available for many local roadways, a simplified SPF can be devel-
oped by using only the segment length as an explanatory variable at
the cost of more uncertain associated with crash predictions. Such
SPFs developed with only segment length exclude many significant ex-
planatory variables and the model-estimated parameter for segment
lengthwill have a high risk of bias. The application of themodel predic-
tionswill then be fundamentally flawed because changes in the omitted
variables cannot be captured and the predicted crash frequencieswill be
incorrect. For practitioners, the developed model will produce biased
estimates and would potentially misguide decision making relative to
a fully specified and often more complex model for which key variables
are explicitly accounted. This study's goal is to develop models for rural
two-lane and ruralmultilane roadways using a dataset that contains the
typical variables of length, AADT, and geometric characteristics by also
incorporating operational speed and weather data. One significant im-
pact of this study is that it includes several national databases that are
accessible to the state DOT safety engineers and practitioners.

4. Data description

4.1. Data sources

The two primary databases conflated to achieve the research goal
are: 1) The National Performance Management Research Dataset
(NPMRDS) and 2) The Highway Safety Information Systems (HSIS)
data. Later, this study assigned the weather station data from the Na-
tional Oceanic and Atmospheric Administration (NOAA) on the con-
flated database.

4.2. HSIS

The HSIS data is a multi-state safety database that contains crash,
roadway inventory, and traffic volume data for a select group of States.
Typical data include the type of crash, type of vehicle, sex and age of oc-
cupants, fixed-object struck, crash severity, and weather conditions.
Traffic volume data contain annual average daily traffic (AADT) data.
Roadway data information on roadway cross-section and the type of
roadway includes the number of lanes, lane width, shoulder width
n of speed and weather measures in safety performance functions for
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and type, median width, rural/urban designation, and functional
classification.

4.3. NPMRDS

Since July 2013, the FHWA has procured NPMRDS to support Freight
Performance Measurement (FPM) and Urban Congestion Report pro-
grams. The NPMRDS includes probe vehicle-based travel time data
(for both passenger and freight vehicles) at 5-min intervals for all Na-
tional Highway System (NHS) facilities. The first version of the
NPMRDS is known as ‘Version 1’ or ‘HERE NPMRDS’ (which is used in
this study). The recent version is known as ‘Version 2’ or ‘INRIX®
NPMRDS,’ which provides data from January 1, 2017. The NPMRDS
data consists of a static GIS file and a database file. TheGIS shapefile con-
taining static roadway informationwas used to relate the travel time in-
formation to each traffic message channel or Traffic Message Channel
(TMC) segment. The GIS shapefile was provided for visualizing and
geo-referencing the NPMRDS data to different maps. The TMC file con-
tains TMC segment geometry information. A database containing a set
of files includes average travel times of passenger, freight, and the two
combined for identified roadways geo-referenced to TMC segment IDs.

4.3.1. Speed measures
The speed data on TMC segments are recorded every epoch (5-min

bin in the raw data). However, the data are not recorded for every
epoch; hence, there is a considerable amount ofmissing values. To over-
come this issue, this study considered averaging the data on a daily or a
monthly basis. For example, speed measure such as ‘monthly average
speed’ can be calculated as follows:

MonthlyAveageSpeedTMCi
¼ 1

n
∑
n

k¼1
Speeddayk ,epoche ,TMCi

ð1Þ

Where
Monthly Average SpeedTMCi

= monthly average speed at segment i
over a month

k = the number of days in a given month
Speeddayk, epoche, TMCi

= the NPMRDS speed on day k and epoch e at
segment i

Tominimize themissing value issues, the epochswere summed into
15-min epochs resulting in 96 speed records per day. However, in pre-
liminary evaluations, both the 5-min and 15-min speed data did not
provide adequate measures about the relationships among the speed,
safety, and operational characteristics of the roadway segment due to
the large number of missing values. Therefore, other measures of
speed were considered. Since the speed data are autocorrelated, speeds
observed at consecutive epochs are not necessarily independent of each
other. As the distributions of the operational speeds vary from facility to
facility for different spatial and temporal factors, several speed mea-
sures (for example, peak-hour 85th percentile speed) were examined
for the SPF development for the two facility types. For the model devel-
opment documented in this paper, the following speed measures were
considered:

• Average hourly speed.
• Average hourly speed during non-peak and non-event (one hour be-
fore and one hour after of a crash occurrence) periods.

• Standard deviation of hourly operating speeds.
• Standard deviation of monthly operating speeds.
• Differences in the operating speeds during weekday and weekend.

4.4. Data conflation

Given the list of the data sources and the purpose of the data analy-
sis, the project team developed conflated datasets by integrating infor-
mation from different sources. The 2015 NPMRDS Static Files were
Please cite this article as: S. Das, S.R. Geedipally and K. Fitzpatrick, Inclusio
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generally produced on a quarterly basis. There are three different Static
Files for 2015: January–June (2014Q3), July–October (2015Q3), and
November–December (2015Q4). For example, 2015Q4 has 650 addi-
tional TMCs inWashington rural NHS roadway networks. In an explora-
tion of the three Static Files, researchers found that over 95% of the
NPMRDS TMCs are the same in the rural areas of the states across the
three NPMRDS Static Files.

Fig. 1 shows the data conflation flowchart. Two databases (NPMRDS
and HSIS for 2015) were used in this study to develop the conflated da-
tabase for two focus states (Ohio andWashington. The 2015 annual pre-
cipitation data from NOAA weather stations were conflated in the HSIS
roadway segments. The HSIS segments with all geometric variable,
crashes, and precipitation data were later conflated to the TMCs. Total
segment lengths (both directions) of Ohio rural two-lane and ruralmul-
tilane roadways are 1907 miles and 1621 miles, respectively. Total seg-
ment lengths (both directions) of Washington rural two-lane and rural
multilane roadways are 3552miles and 521 miles respectively. Fig. 2 il-
lustrates the total number of KABC and PDO crashes in Ohio and
Washington.

Tables 2 and 3 list the descriptive statistics of the key variables. The
distributions of the speedmeasures (by facility type) do not show a sig-
nificant difference between the states. Percentage of days with precipi-
tation in Washington is higher than Ohio, which is as expected. The
AADT of Washington is slightly higher than Ohio.

Variable selection is an important step before model development.
The correlation plots (see Figs. 3 and 4) show the positive or negation
correlation between the variables. In these plots, blue means positive,
and red means negative. The stronger the color, the larger the correla-
tion magnitude. The variables of the rural multilane roadways have
higher correlation values than the rural two-lane roadways. The corre-
lation plots shown here are based on raw data and for total crashes only.

5. Model development and results

This study developed models for total crashes (KABCO), KABC
crashes, and PDO crashes, by considering all major geometric variables,
five speed measures, and NOAA values after removing some outliers.
This section presents the methodology and results related to the SPFs
for rural two-lane and rural multilane highways.

5.1. Safety performance functions

Separate models were developed for total (KABCO), KABC, and PDO
crash. Experience with the regression-based calibration of SPFs and
CMFs using total, KABC, and PDO crash indicates that the calibration co-
efficients often vary amongmodel types for common variables. Some of
this variation is likely due to the fact that geometric elements often have
a different effect on KABC crashes than on PDO crashes. Also, it is widely
recognized that PDO crash counts varywidely on a regional basis due to
significant variation in the reporting threshold. When crash frequency
varies systematically from county to county, district to district, and
state to state because of formal and informal differences in the reporting
threshold, the use of PDO crash data to build PDO crash prediction
models may yield inaccurate results about the variable influence.
Thus, themodelswere developed for three severity levels to understand
the difference in variable effects. Except for curve length and radius, the
interaction between the variables was not considered. As noted by
Srinivasan and Bauer [19], interactions are not usually considered dur-
ing SPF development. The authors mentioned that there is no easy
way to identify which interactions are important and how they should
be included in a model unless there is some theoretical reason for in-
cluding certain interactions.

5.1.1. Rural two-lane roadways
Different variable combinations and various model forms were ex-

amined to identify the best possible relationship between the number
n of speed and weather measures in safety performance functions for
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Fig. 1. Data conflation.

Table 2
Descriptive statistics of rural two-lane roadways.

Code Mean SD Min Max

Ohio
Total Crashes per segment KABCO 3 4 0 28
Fatal and Injury Crashes per segment KABC 1 1 0 9
PDO Crashes per segment PDO 2 3 0 19
Segment Length (mi.) Len 3 2 0.1 15
Annual Average Daily Traffic (vehicle
per day)

AADT 5609 2581 818 15,070

Lane Width (ft.) LW 25 4 18 48
Presence of Intersection IntPre 0.3 0.5 0 1
Percentage of Curve PerHC 6.7 17.2 0 100
Percentage of Days with Precipitation PPrcp 23 45 5 85
Average Hourly Speed (mph) SpdAvg 44.9 9.6 13.5 71.3
Average Hourly Non-Peak Non-Event
Speed (mph)

SpdNPNE 52.1 8.3 16.9 85.0

Standard Dev. of Hourly Operating
Speeds (mph)

SDHrSpd 1.4 1.0 0.0 10.0

Standard Dev. of Monthly Operating
Speeds (mph)

SDMonSpd 0.6 0.5 0.0 7.1

Avg. Spd. Diff. in Weekday/Weekend
(mph)

SpdW_W 1.9 0.4 1.2 5.6

Washington
Total Crashes per segment KABCO 4 5 0 34
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of crashes and independent variables. The model presented below was
informed by findings from several preliminary regression analyses.
The following model shows the relation between predicted number of
average crash frequencies with segment length, traffic volume, and
other variables including different speed measures:

N ¼ Len� eb0þbaadt ln AADTð Þ � CMFlw � CMFhc � CMFsdif � CMFsvar1
� CMFsvar2 � CMFsff � CMFint � CMFprec ð2Þ

with,

CMFlw ¼ eblw wl−12ð Þ

CMFhc ¼ 1:0þ bhc
Lc
L

� �

CMFsdif ¼ ebsd SpdDiffð Þ

CMFsvar1 ¼ ebsv1 Isvar1ð Þ

CMFsvar2 ¼ ebsv2 Isvar2ð Þ

CMFsff ¼ ebsff SFFð Þ

CMFint ¼ ebint Iint

CMFprec ¼ ebprec pprecð Þ

where:
N = predicted annual average crash frequency
Len = segment length, miles
Fig. 2. KABC and PDO crashes in Ohio and Washington (2015).

Please cite this article as: S. Das, S.R. Geedipally and K. Fitzpatrick, Inclusio
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AADT = average annual daily traffic, vehicles per day
CMFlw = Lane width CMF
CMFhc = Horizontal curve CMF
CMFsdif=CMF for speed difference between weekend and weekday
CMFsvar1 = CMF for variance in hourly operating speeds
CMFsvar2 = CMF for variance in monthly operating speeds
Fatal and Injury Crashes per segment KABC 1 2 0 12
PDO Crashes per segment PDO 3 3 0 24
Segment Length (mi.) Len 5 4 0.1 25
Annual Average Daily Traffic (vehicle
per day)

AADT 5818 4490 0 26,493

Lane Width (ft.) LW 25 4 20 67
Presence of Intersection IntPre 0.4 0.5 0.0 1
Percentage of Curve PerHC 33.7 27.3 0.0 100
Percentage of Days with Precipitation PPrcp 37.1 21.9 0.0 70
Average Hourly Speed (mph) SpdAvg 47.3 11.2 4.5 85.0
Average Hourly Non-Peak Non-Event
Speed (mph)

SpdNPNE 55.0 10.0 6.8 85.0

Standard Dev. of Hourly Operating
Speeds (mph)

SDHrSpd 1.7 1.6 0.0 10.0

Standard Dev. of Monthly Operating
Speeds (mph)

SDMonSpd 0.8 0.6 0.0 4.4

Avg. Spd. Diff. in Weekday/Weekend
(mph)

SpdW_W 2.1 0.6 1.9 6.2
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Table 3
Descriptive statistics of rural multilane roadways.

Code Mean SD Min Max

Ohio
Total Crashes per segment KABCO 4 5 0 36
Fatal and Injury Crashes per
segment

KABC 1 2 0 10

PDO Crashes per segment PDO 3 4 0 27
Segment Length (mi.) Len 3 2 0.1 12
Annual Average Daily Traffic
(vehicle per day)

AADT 13,216 6449 3108 40,840

Lane Width (ft.) LW 48 5 26 69
Presence of Intersection IntPre 0.2 0.7 0 1
Percentage of Curve PerHC 5.1 15.6 0 100
Percentage of Days with
Precipitation

PPrcp 22 16.6 5 80

Average Hourly Speed (mph) SpdAvg 54.3 12.1 18.6 85.0
Average Hourly Non-Peak
Non-Event Speed (mph)

SpdNPNE 59.6 9.6 26.4 86.1

Standard Dev. of Hourly Operating
Speeds (mph)

SDHrSpd 1.2 1.4 0.0 10.0

Standard Dev. of Monthly
Operating Speeds (mph)

SDMonSpd 0.7 0.5 0.0 4.8

Avg. Spd. Diff. in
Weekday/Weekend (mph)

SpdW_W 1.2 0.7 0.9 6.1

Washington
Total Crashes per segment KABCO 5 6 0 32
Fatal and Injury Crashes per
segment

KABC 2 2 0 11

PDO Crashes per segment PDO 4 5 0 26
Segment Length (mi.) Len 4 3 0.1 12
Annual Average Daily Traffic
(vehicle per day)

AADT 17,940 12,508 0 77,827

LaneWidth (ft.) LW 48 7 29 76
Presence of Intersection IntPre 0.5 0.5 0 1
Percentage of Curve PerHC 30.9 29.3 0 100
Percentage of Days with
Precipitation

PPrcp 44.5 23.1 19.2 95.1

Average Hourly Speed (mph) SpdAvg 52.0 13.3 14.5 85.0
Average Hourly Non-Peak
Non-Event Speed (mph)

SpdNPNE 57.8 11.0 20.8 85.0

Standard Dev. Of Hourly Operating
Speeds (mph)

SDHrSpd 1.5 1.7 0.3 10.0

Standard Dev. Of Monthly
Operating Speeds (mph)

SDMonSpd 0.8 0.8 0.0 4.7

Avg. Spd. Diff. in
Weekday/Weekend (mph)

SpdW_W 0.8 1.3 0.0 9.2

6 S. Das et al. / IATSS Research xxx (2020) xxx
CMFsff = CMF for free-flow speed
CMFint = CMF for presence of an intersection on the segment
CMFprec = CMF for precipitation
wl = Average lane width in both directions (ft)
Lc = total length of all horizontal curves on the segment
SpdDiff=percent difference of operating speeds between weekend

and weekday
Isvar1 = indicator variable for high variance in hourly operating

speeds within a day (= 1 if hourly standard deviation is >1 mph; = 0
otherwise)

Isvar2 = indicator variable for high variance in monthly operating
speeds within a year (= 1 if monthly standard deviation is >1 mph;
= 0 otherwise)

SFF = free-flow speed, mph
Iint=Indicator variable for intersection presence (=1 if present;=0

otherwise)
pprec = percent of days with precipitation.
bj = calibrated coefficients (j = hc, sd, svar1, svar2, sff, int, prec).
The inverse dispersion parameter, K (which is the inverse of the

overdispersion parameter α), is allowed to vary with the segment
length. The inverse dispersion parameter is calculated using:

K ¼ L� ek ð3Þ

where,
Please cite this article as: S. Das, S.R. Geedipally and K. Fitzpatrick, Inclusio
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K = inverse dispersion parameter.
k = calibration coefficient for inverse dispersion parameter.
Table 4 lists the model outputs of rural two-lane highways.
The explanations of the model outcomes are described below:

• Horizontal curves (PerHC): This variable represents the proportion of
the segment with horizontal curves. The two state and Washington
models show coefficients positive and significant demonstrating that
as the proportion of horizontal curvature increases, the number of
crashes increases. In preliminary models, the sharpness of the curve
was not found to be statistically significant. This does not mean that
the curve sharpness has no effect, but it is possible that the variability
in the data variable may be too low to show a statistical significance
for this database. Similar reason can be attributed to the insignificance
of horizontal curvature variable in Ohio State.

• Lane width (LW): This variable represents the average of lane widths
in both directions. For both states together, the coefficient is negative
for total crashes and KABC crashes, but marginally significant so not
reported here. For Washington only data, the variable is significant
and negative in all cases. This means that with the increase in lane
width on a particular segment, the number of crashes decreases.

• Operating speed difference (SpdW_W): This variable represents the
percent difference of operating speeds between weekends and week-
days. Generally, this variable is always greater than zero because the
operating speeds during the weekend are usually higher than on
weekdays unless congestion occurs only during the weekend. The
variable value is much greater than zero if the road experiences fre-
quent congestion during the weekday or if the weekend speeds are
much higher due to fewer vehicles on this type of roads. The coeffi-
cient is significant and positive for both states PDO crashes and for
Washington KABCO and PDO crash types. This means, with higher
weekend as compared to weekday speeds, more crashes (especially
PDO crashes) occur perhaps due to congestion during weekday or
higher speeds in the weekends.

• Standard Deviation in hourly operating speeds (SDHrSpd): This variable
represents the operating speed variation among the hours of a day
with an indicator variable of 1 for those segments where the standard
deviation was greater than 1 mph. The coefficient is positive and sta-
tistically significant for KABC crashes in the two states and
Washington onlymodels. A segmentwith high variation in hourly op-
erating speeds (i.e., >1.4 mph) is expected to experience a higher
number of KABC crashes than a segment with a lower variation in
hourly speeds.

• Standard Deviation in monthly operating speeds (SDMonSpd): This var-
iable represents the operating speed variation among themonths of a
year with an indicator variable of 1 for those segments where the
standard deviationwas greater than 1mph. The coefficient is insignif-
icant for both total and KABC crashes in all models but positive and
significant for O crashes in the Ohio only model. A segment with
high variation in monthly operating speeds (i.e., >1mph) is expected
to experience a higher number of O crashes than a segment with a
lower variation in monthly speeds.

• Non-peak non-event operating speed (SpdNPNE): This variable repre-
sents the operating speed during non-peak and non-event hours.
The coefficient is insignificant for all crashes, irrespective of the data
used. This could be due to the low variation in the non-peak non-
event speeds between the segments considered in the study.

• Precipitation (PPrcp): This variable represents the percent of days with
some level of precipitation. The coefficient is negative and significant in
most of the models. This finding is counterintuitive because it shows
that segments with more precipitation tend to have fewer crashes
than other segments. However, it is possible that the vehicle speeds re-
duceduring thewetweather conditions, somay result in fewer crashes.
Additional variables are needed to reexamine this finding.

• Intersection presence (IntPre): This variable has a value of 1 if at least
one intersection is on the segment. The coefficient is positive and
n of speed and weather measures in safety performance functions for
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Fig. 3. Correlation plots of key variables (Rural two-lane roadways).

7S. Das et al. / IATSS Research xxx (2020) xxx
significant in all cases. This finding indicates that rural two-lane seg-
ments with intersections tend to have more crashes than segments
without intersection, as expected. With intersections, the conflict
points increase, thus increasing the number of crashes.

• State effect:When the two states' data are combined, the coefficient for
Ohio is positive and significant. This means that controlling for the
other variables, Ohio is expected to experience more crashes than
Washington. This finding could be due to differences in weather, ter-
rain, reporting threshold, and other variables that were not considered
in the model.
Fig. 4. Correlation plots of key variab
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5.2. Rural multilane roadways

The form considered for the rural multilane roads was:

N ¼ L� eb0þbuþbaadt ln AADTð Þ � CMFlw � CMFhc � CMFsdif � CMFsvar1
� CMFsvar2 � CMFsff � CMFint � CMFprec ð4Þ

where:
bu = Adjustment for undivided road.
les (Rural multilane roadways).
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Table 4
Model estimation results of annual crash frequencies at segments (Rural Two-Lane).

Variablesa Two States Ohio Washington

KABCO KABC O KABCO KABC O KABCO KABC O

Intercept −5.8138 −7.6705 −5.8097 −3.6772 −6.8237 −3.4111 −6.5573 −7.9683 −6.9051
AADT 0.6048 0.6435 0.5679 0.3706 0.5967 0.3352 0.6962 0.6744 0.7048
LW – – – – – – −0.0962 −0.1814 −0.0672
PerHC 0.8681 1.0319 0.8230 – – – 1.1538 1.1829 1.1356
SpdW_W – – 0.02845 – – – 0.0444 – 0.04454
SDHrSpd – 0.1654 – – – – – 0.1878 –
SDMonSpd – – – – – 0.3224 – – –
SpdNPNE – – – – – – – – –
IntPre 0.3163 0.2769 0.3296 0.4498 0.4074 0.3817 0.2278 0.1801 0.2398
PPrcp −0.5372 – −0.6149 – – – −0.8338 – −1.0547
Added effect of Ohio 0.6332 0.4103 0.6691 NA NA NA NA NA NA

Notes: – means not significant at 5% level; NA means not applicable.
a Description of variables provided in Table 2.

Table 5
Model estimation results of annual crash frequencies at segments (Rural Multilane).

Variablesa Two States Ohio Washington

KABCO KABC PDO KABCO KABC O KABCO KABC PDO

Undivided road 0.2686 0.3903 – 0.4826 0.4598 0.4513 – 0.3376 –
AADT 0.4848 0.3573 0.5529 0.4335 0.3381 0.4945 0.6473 0.6593 0.7084
PerHC 2.0307 1.574 2.3082 1.5865 – – 3.6393 0.9047 4.7683
SpdW_W 0.05879 – 0.05048 0.0666 – 0.0599 – −0.1504 –
SDHrSpd – 0.2418 – – 0.4081 – −0.292 – –
SDMonSpd 0.3911 – 0.4013 0.2969 – 0.3553 0.8381 1.0588 0.6856
SpdNPNE 0.0269 0.0239 0.0251 0.0308 0.0238 0.03055 – 0.0598 –
IntPre 0.5714 0.5625 0.5797 0.6052 0.7757 0.5664 0.452 −0.0212 0.5999
PPrcp −1.9369 – −1.8614 −1.7573 – −2.3932 – – –
Added effect of Ohio 0.8282 0.3397 1.0050 NA NA NA NA NA NA
Inverse dispersion parameter for undivided roads −0.5868 −0.2271 −0.6188 −0.601 −0.5042 −0.5522 −0.4212 0.0506 −0.417
Inverse dispersion parameter for divided roads −0.9955 −0.8616 −0.9469 −1.0595 −0.6138 −1.0097 −0.4212 0.0506 −0.417
Intercept −6.4938 −6.9752 −7.4546 −5.5104 −6.5777 −6.0308 −6.4405 −11.196 −7.634

Notes: — means not significant at 5% level; NA means not applicable.
a Description of variables provided in Table 3.
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Table 5 lists the model outputs of rural multilane highways.
The explanations of the model outcomes are described below:

• Undivided road: This variable represents whether the segment is undi-
vided or divided. The coefficient is positive and significant in almost
all cases, except O crashes. This finding indicates that undivided
rural multilane roads experience more crashes than divided roads
for the same traffic and other conditions. For undivided roads, the like-
lihood of opposite-direction and turning-related crashes is relatively
higher than for divided roads,whichmay also be a reasonwhy this re-
lationship was not significant for O crashes.

• Lane Width (LW): Lane width is not significant for rural multilane
models.

• Horizontal curves (PerHC): The coefficient is positive and significant in
all cases, except for KABC and O crashes in Ohiomodel. It shows that a
higher proportion of horizontal curvature is associated with a higher
the number. The sharpness of the curve was not statistically signifi-
cant in the preliminary models.

• Operating speed difference (SpdW_W): The coefficient is significant and
positive for KABCOand PDOcrashes in theOhio and two-statemodels.
This means, the increase in the difference in speeds between week-
ends and weekdays is associated with more crashes perhaps due to
occasional congestion during the weekday or higher speeds in week-
ends.

• Variance in hourly operating speeds (SDHrSpd): The coefficient is posi-
tive for KABC in Ohio and the two-state models but insignificant for
most of the other conditions. The exception is the coefficient for this
variable using the Washington KABCO data which was negative
Please cite this article as: S. Das, S.R. Geedipally and K. Fitzpatrick, Inclusio
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indicating a counterintuitive result. Additional investigation into this
variable is needed. The positive coefficients for KABC in Ohio and the
two-state models show that a segment with variation in hourly oper-
ating speeds of more than >1mph is expected to experience a higher
number of crashes than a segment with a lower variation in hourly
speeds.

• Variance in monthly operating speeds (SDMonSpd): When the coeffi-
cient is statistically significant it is positive. A segment with variation
in monthly operating speeds of more than >1 mph is expected to ex-
perience a higher number of crashes than a segmentwith a lower var-
iation in monthly speeds.

• Non-peak non-event operating speed (SpdNPNE): The coefficient for
non-peak non-event times is significant formost of the cases and pos-
itive. Thisfindingmeans thatwith the increase in non-peaknon-event
speeds, crashes increase.

• Precipitation (PPrcp): The coefficient is negative and significant in
most of the models. One possible explanation is that the vehicle
speeds reduce during the wet weather conditions, so it may result in
fewer crashes. However, extended exploration is needed to reexam-
ine this finding.

• Intersection presence (IntPre): The variable is positive and significant in
most cases. This finding means that segments with at least one inter-
section tend to have more crashes than segments without intersec-
tion, as expected. With intersections, the conflict points increase,
thus increasing the number of crashes.

• State effect: When the two states' data are combined, the coefficient
for Ohio is positive and significant for O crashes only. This means
that controlling for the other variables, Ohio is expected to experience
n of speed and weather measures in safety performance functions for
01

https://doi.org/10.1016/j.iatssr.2020.05.001


9S. Das et al. / IATSS Research xxx (2020) xxx
the same number of KABC crashes but more O crashes than
Washington. This finding could be due to the difference in weather,
terrain, reporting threshold, and other variables that were not used
in the model.

6. Validation and tool development

6.1. Model validation

The Cumulative Residual (CURE) plots were used to conduct the val-
idation for models developed using the two states data combined. The
CURE plots show the performance of themodel with respect to a partic-
ular variable. Hauer [20] showed that themodel performance is reason-
able if the plot of cumulative residuals oscillates around 0, end close to 0,
and not exceed the ±2*standard deviation bounds. If the plot of resid-
uals shows any systemic drift, then it can be concluded that the model
provides biased estimates. Fig. 5(a–c) show the CURE plots for rural
two-lane highway models. All CURE plots show that the model fits the
data alongwith the entire range of AADT values because the cumulative
graphs have a random walk oscillating around zero and they ended
close to zero. Fig. 5d shows the best-fit CURE plot for rural multilane
highway models. The CURE plot for KABC crashes shows that the
model fits the data along with the entire range of AADT values because
the cumulative graph has a random walk oscillating around zero and it
ended close to zero.
6.2. Interactive decision support tool

This study developed a prototype interactive decision support tool
that incorporated Washington and Ohio data containing the expected
total crashes from the final models to show segment-level high-risk
analysis [21]. This tool (see Fig. 6) can visually guide the users to explore
the segment-based risk analysis. Interested readers can consult Das and
White study [22] for additional details on the tool.
Fig. 5. CURE
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7. Conclusions

This study examined the prevailing operating speeds and weather
data on a large scale and quantified how traffic speed andweather con-
dition interact with roadway characteristics to affect the likelihood of
crashes. As bothNPMRDS andNOAAdata are available to the state agen-
cies, state traffic safety engineers and practitioners can apply the re-
search approach (incorporation of speed and weather information as
risk variables in the SPFs) to quantify highway safety risk and anticipate
crash occurrence. The current study is a starting point formore in-depth
investigation and continued progress in incorporating speed-related
factors into crash predictive models. This study has two unique
contributions:

• Developed a reproducible approach to conflate different linear net-
works and incorporate speed and weather measures.

• Quantified the targeted relationship between crashes and influential
variables by developing best-fit models that address the impact of op-
erating speed and weather in annual crash predictions.

This study developed SPFs for KABCO crashes, KABC crashes, and
PDO crashes, for Washington and Ohio separately as well as for both
states together, for rural two-lane and rural multilane roadways within
the National Highway System. The findings show that certain speed
measures were useful in the development of the annual segment-level
statisticalmodels. For example, increased variability in hourly operating
speedwithin a day andmonthly operating speedswithin a year are both
associatedwith increased crashes (statistically significant) for several of
the crash types examined. Majority of the findings of this study are in
linewith other studies. Fewnon-intuitive relationships requiremore in-
vestigation. For example, the negative association between precipita-
tion and annual crash frequencies is not intuitive. There is a need for
added variables such as surface condition, and visibility measures to re-
examine this relationship.

This study is not without limitations. First, this research used road-
way segments based onNPMRDS travel time data TMC segment lengths
plots.

n of speed and weather measures in safety performance functions for
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Fig. 6. Interactive decision support tool (Source: 21).
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(some of the segments are quite long compared to other segments). It is
anticipated that uniform resegmentationmight be beneficial in improv-
ing the model performance. Further examination of the effects of seg-
ment length would improve modeling reliability. Second, missing
values in the NPMRDS travel time data are higher in lower functional
classes. More robust NPMRDS data with fewer missing values would
provide more insightful knowledge on how operating speeds affect
crashes. Third, many other potential variables (e.g., visibility condition,
vertical curve, super elevation) and variable interactions were not per-
formed in this study. Limitation of the current study can be improved
in future studies. Subsequent study may examine some limitations
found in this study to see if those limitations can be overcomeby revised
versions of the data, additional data sources, and refinement in
modeling.
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